skip to main content


Search for: All records

Creators/Authors contains: "Hultine, Kevin R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Despite an increased focus on multiscale relationships and interdisciplinary integration, few macroecological studies consider the contribution of genetic-based processes to landscape-scale patterns. We test the hypothesis that tree genetics, climate, and geography jointly drive continental-scale patterns of community structure, using genome-wide SNP data from a broadly distributed foundation tree species (Populus fremontii S. Watson) and two dependent communities (leaf-modifying arthropods and fungal endophytes) spanning southwestern North America. Four key findings emerged: (1) Tree genetic structure was a significant predictor for both communities; however, the strength of influence was both scale- and community-dependent. (2) Tree genetics was the primary driver for endophytes, explaining 17% of variation in continental-scale community structure, whereas (3) climate was the strongest predictor of arthropod structure (24%). (4) Power to detect tree genotype—community phenotype associations changed with scale of genetic organization, increasing from individuals to populations to ecotypes, emphasizing the need to consider nonstationarity (i.e., changes in the effects of factors on ecological processes across scales) when inferring macrosystem properties. Our findings highlight the role of foundation tree species as drivers of macroscale community structure and provide macrosystems ecology with a theoretical framework for linking fine- and intermediate-scale genetic processes to landscape-scale patterns. Management of the genetic diversity harbored within foundation species is a critical consideration for conserving and sustaining regional biodiversity. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  2. Summary

    Populus fremontiiis among the most dominant, and ecologically important riparian tree species in the western United States and can thrive in hyper‐arid riparian corridors. Yet,P. fremontiiforests have rapidly declined over the last decade, particularly in places where temperatures sometimes exceed 50°C.

    We evaluated high temperature tolerance of leaf metabolism, leaf thermoregulation, and leaf hydraulic function in eightP. fremontiipopulations spanning a 5.3°C mean annual temperature gradient in a well‐watered common garden, and at source locations throughout the lower Colorado River Basin.

    Two major results emerged. First, despite having an exceptionally highTcrit(the temperature at which Photosystem II is disrupted) relative to other tree taxa, recent heat waves exceededTcrit, requiring evaporative leaf cooling to maintain leaf‐to‐air thermal safety margins. Second, in midsummer, genotypes from the warmest locations maintained lower midday leaf temperatures, a higher midday stomatal conductance, and maintained turgor pressure at lower water potentials than genotypes from more temperate locations.

    Taken together, results suggest that under well‐watered conditions,P. fremontiican regulate leaf temperature belowTcritalong the warm edge of its distribution. Nevertheless, reduced Colorado River flows threaten to lower water tables below levels needed for evaporative cooling during episodic heat waves.

     
    more » « less
  3. Seebacher, Frank (Ed.)
    Abstract In 1992, the Union of Concerned Scientists shared their ‘World Scientists’ Warning to Humanity’ with governmental leaders worldwide, calling for immediate action to halt the environmental degradation that threatens the systems that support life on Earth. A follow-up ‘Second Warning’ was released in 2017, with over 15 000 scientists as signatories, describing the lack of progress in adopting the sustainable practices necessary to safeguard the biosphere. In their ‘Second Warning’, Ripple and colleagues provided 13 ‘diverse and effective steps humanity can take to transition to sustainability.’ Here, we discuss how the field of conservation physiology can contribute to six of these goals: (i) prioritizing connected, well-managed reserves; (ii) halting the conversion of native habitats to maintain ecosystem services; (iii) restoring native plant communities; (iv) rewilding regions with native species; (v) developing policy instruments; and (vi) increasing outdoor education, societal engagement and reverence for nature. Throughout, we focus our recommendations on specific aspects of physiological function while acknowledging that the exact traits that will be useful in each context are often still being determined and refined. However, for each goal, we include a short case study to illustrate a specific physiological trait or group of traits that is already being utilized in that context. We conclude with suggestions for how conservation physiologists can broaden the impact of their science aimed at accomplishing the goals of the ‘Second Warning’. Overall, we provide an overview of how conservation physiology can contribute to addressing the grand socio-environmental challenges of our time. 
    more » « less
  4. Summary

    Plant water use theory has largely been developed within a plant‐performance paradigm that conceptualizes water use in terms of value for carbon gain and that sits within a neoclassical economic framework. This theory works very well in many contexts but does not consider other values of water to plants that could impact their fitness. Here, we survey a range of alternative hypotheses for drivers of water use and stomatal regulation. These hypotheses are organized around relevance to extreme environments, population ecology, and community ecology. Most of these hypotheses are not yet empirically tested and some are controversial (e.g. requiring more agency and behavior than is commonly believed possible for plants). Some hypotheses, especially those focused around using water to avoid thermal stress, using water to promote reproduction instead of growth, and using water to hoard it, may be useful to incorporate into theory or to implement in Earth System Models.

     
    more » « less
  5. Mycorrhizal restoration benefits are widely acknowledged, yet factors underpinning this success remain unclear. To illuminate when natural regeneration might be sufficient, we investigated the degree mycorrhizal fungi would colonizePopulus fremontii(Fremont cottonwood) 2 years after the restoration of a riparian corridor, in the presence of an adjacent source. We compared colonization levels across plant populations and ecotypes, and from trees in the planted area to those in natural source populations. Four findings contribute to the theory and application of host–symbiont interactions. (1) Median ectomycorrhizal colonization of trees in the planted area was less than one‐tenth of that within natural source populations (p < 0.05), suggesting that even with adjacent intact habitat, sluggish regeneration would make proactive mycorrhizal restoration beneficial. (2) Within the planted area, median ectomycorrhizal and arbuscule colonization of trees sourced from greater distances were less than one‐third of that for trees sourced locally (p < 0.05), suggesting translocation poses barriers to symbioses. (3) Changes in colonization did not align with plant ecotypes, suggesting that geographic scales of selection for plants and fungi differ. (4) Slight increases in median mycorrhizal colonization (from 0% to 5%) were strongly correlated with increased survival for the plant provenance with lowest survival (r2 = 46% andrs = 48%,p < 0.05), suggesting mycorrhizae are particularly beneficial when plants are under stress (including translocation‐induced stress). This study is novel in demonstrating that mycorrhizal regeneration is slow even in the presence of adjacent intact habitat, and that when colonization could seem negligible, it may still have biological significance.

     
    more » « less
  6. Cooke, Steven (Ed.)
    Abstract Populus fremontii (Fremont cottonwood) is recognized as one of the most important foundation tree species in the southwestern USA and northern Mexico because of its ability to structure communities across multiple trophic levels, drive ecosystem processes and influence biodiversity via genetic-based functional trait variation. However, the areal extent of P. fremontii cover has declined dramatically over the last century due to the effects of surface water diversions, non-native species invasions and more recently climate change. Consequently, P. fremontii gallery forests are considered amongst the most threatened forest types in North America. In this paper, we unify four conceptual areas of genes to ecosystems research related to P. fremontii’s capacity to survive or even thrive under current and future environmental conditions: (i) hydraulic function related to canopy thermal regulation during heat waves; (ii) mycorrhizal mutualists in relation to resiliency to climate change and invasion by the non-native tree/shrub, Tamarix; (iii) phenotypic plasticity as a mechanism for coping with rapid changes in climate; and (iv) hybridization between P. fremontii and other closely related Populus species where enhanced vigour of hybrids may preserve the foundational capacity of Populus in the face of environmental change. We also discuss opportunities to scale these conceptual areas from genes to the ecosystem level via remote sensing. We anticipate that the exploration of these conceptual areas of research will facilitate solutions to climate change with a foundation species that is recognized as being critically important for biodiversity conservation and could serve as a model for adaptive management of arid regions in the southwestern USA and around the world. 
    more » « less